The risk of chronic myeloid leukemia: can the dose-response curve be U-shaped?
نویسندگان
چکیده
Chronic myeloid leukemia (CML) is caused by a BCR-ABL chromosome translocation in a primitive hematopoietic stem cell. The number of hematopoietic stem cells in the body is thus a major factor in CML risk. Evidence suggests that the number of hematopoietic stem cells in the body is only loosely regulated, having a broad "dead-band" of physiologically acceptable values. The existence of a dead-band is important, because it would imply that low levels of hematopoietic stem cell killing can be permanent; i.e., it would imply that low doses of ionizing radiation can cause permanent reductions in the total number of CML target cells and thus permanent reductions in the subsequent risk of spontaneous CML. Such reductions in risk could be substantial if hematopoietic stem cells are also hypersensitive to radiation killing at low dose. Our calculations indicate that, due to dead-band hematopoietic stem cell control, if hematopoietic stem cells are as hypersensitive to killing at low doses as epithelial cells, reductions in the spontaneous CML risk could exceed the low-dose risks of induced CML; i.e., the net lifetime CML risk could have a U-shaped dose-response curve.
منابع مشابه
Impact of ABCB1 Gene Polymorphisms and Smoking on the Susceptibility Risk of Chronic Myeloid Leukemia and Cytogenetic Response
Background: Imatinib mesylate (IM), a strong and selective tyrosine kinase inhibitor, has been approved as the front line of treatment in chronic myeloid leukemia (CML) patients. In spite of satisfactory results of imatinib in the treatment of patients with CML, patients with treatment failure or suboptimal response developed resistance that might be because of pharmacogenetic variants. This st...
متن کاملRole of Oxidative Stress in Modulating Unfolded Protein Response Activity in Chronic Myeloid Leukemia Cell Line
Background: Recently, it has been revealed that tyrosine kinase inhibitors (TKIs) act through inducing both oxidative and endoplasmic reticulum (ER) stress in chronic myeloid leukemia cells. However, ER stress signaling triggers both apoptotic and survival processes within cells. Nevertheless, mechanisms by which TKIs avoid the pro-survival effects are not clear. The aim of this study was to ev...
متن کاملSignaling pathways involved in chronic myeloid leukemia pathogenesis: the importance of targeting Musashi2-Numb signaling to eradicate leukemia stem cells
Objective(s): Chronic myeloid leukemia (CML) is a myeloid clonal proliferation disease defining by the presence of the Philadelphia chromosome that shows the movement of BCR-ABL1. In this study, the critical role of the Musashi2-Numb axis in determining cell fate and relationship of the axis to important signaling pathways such as Hedgehog and Notch that are essential ...
متن کاملThe long-term outcome and efficacy of PR1/BCR-ABL multipeptides vaccination in chronic myeloid leukemia: results of a 7-year longitudinal investigation
Background: Although Imatinib has revolutionized the treatment of chronic myeloid leukemia (CML), not all patients reach complete remission and a considerable proportion of the patients develop resistance to Imatinib. Material and Methods: In an attempt to increase the tail on the survival curve, we conducted a Phase I/II study of PR1/BCR-ABL multipeptides vaccination trial in CML patients wit...
متن کاملThe role of microRNA in acute/chronic, myeloid/lymphocytic leukemia
MicroRNAs are small, non-coding sequences that regulate gene expression by inducing degradation or translational inhibition of target mRNAs. These molecules control many intracellular physiological and pathological processes.Abnormal expression of these moleculs has been described in different cancers including hematopoietic cancers. According to the type of cancer and the stage, miRNA’s expres...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Radiation research
دوره 157 1 شماره
صفحات -
تاریخ انتشار 2002